p-group, metabelian, nilpotent (class 3), monomial
Aliases: C42.67D4, C42.148C23, C4.15C4≀C2, C4⋊Q8.16C4, C4⋊1D4.11C4, C42.89(C2×C4), (C22×C4).738D4, C42.6C4⋊35C2, C8⋊C4.146C22, C42.C22⋊9C2, (C2×C42).192C22, C22.2(C4.D4), C23.104(C22⋊C4), C4.4D4.115C22, C2.30(C42⋊C22), C22.26C24.10C2, C2.35(C2×C4≀C2), (C2×C4○D4).4C4, (C2×C8⋊C4)⋊15C2, (C2×D4).22(C2×C4), (C2×Q8).22(C2×C4), (C2×C4).1176(C2×D4), C2.12(C2×C4.D4), (C22×C4).214(C2×C4), (C2×C4).142(C22×C4), (C2×C4).320(C22⋊C4), C22.206(C2×C22⋊C4), SmallGroup(128,262)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C42.67D4
G = < a,b,c,d | a4=b4=1, c4=a2b2, d2=b, ab=ba, cac-1=dad-1=ab2, cbc-1=a2b-1, bd=db, dcd-1=a2b-1c3 >
Subgroups: 284 in 128 conjugacy classes, 46 normal (26 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, D4, Q8, C23, C23, C42, C22⋊C4, C4⋊C4, C2×C8, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C8⋊C4, C8⋊C4, C22⋊C8, C4⋊C8, C2×C42, C4×D4, C4⋊D4, C4.4D4, C4⋊1D4, C4⋊Q8, C22×C8, C2×C4○D4, C42.C22, C2×C8⋊C4, C42.6C4, C22.26C24, C42.67D4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, C4.D4, C4≀C2, C2×C22⋊C4, C2×C4.D4, C2×C4≀C2, C42⋊C22, C42.67D4
(1 45 19 37)(2 34 20 42)(3 47 21 39)(4 36 22 44)(5 41 23 33)(6 38 24 46)(7 43 17 35)(8 40 18 48)(9 54 61 29)(10 26 62 51)(11 56 63 31)(12 28 64 53)(13 50 57 25)(14 30 58 55)(15 52 59 27)(16 32 60 49)
(1 58 23 10)(2 63 24 15)(3 60 17 12)(4 57 18 9)(5 62 19 14)(6 59 20 11)(7 64 21 16)(8 61 22 13)(25 48 54 36)(26 45 55 33)(27 42 56 38)(28 47 49 35)(29 44 50 40)(30 41 51 37)(31 46 52 34)(32 43 53 39)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 40 58 29 23 44 10 50)(2 32 63 43 24 53 15 39)(3 46 60 52 17 34 12 31)(4 55 57 33 18 26 9 45)(5 36 62 25 19 48 14 54)(6 28 59 47 20 49 11 35)(7 42 64 56 21 38 16 27)(8 51 61 37 22 30 13 41)
G:=sub<Sym(64)| (1,45,19,37)(2,34,20,42)(3,47,21,39)(4,36,22,44)(5,41,23,33)(6,38,24,46)(7,43,17,35)(8,40,18,48)(9,54,61,29)(10,26,62,51)(11,56,63,31)(12,28,64,53)(13,50,57,25)(14,30,58,55)(15,52,59,27)(16,32,60,49), (1,58,23,10)(2,63,24,15)(3,60,17,12)(4,57,18,9)(5,62,19,14)(6,59,20,11)(7,64,21,16)(8,61,22,13)(25,48,54,36)(26,45,55,33)(27,42,56,38)(28,47,49,35)(29,44,50,40)(30,41,51,37)(31,46,52,34)(32,43,53,39), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,40,58,29,23,44,10,50)(2,32,63,43,24,53,15,39)(3,46,60,52,17,34,12,31)(4,55,57,33,18,26,9,45)(5,36,62,25,19,48,14,54)(6,28,59,47,20,49,11,35)(7,42,64,56,21,38,16,27)(8,51,61,37,22,30,13,41)>;
G:=Group( (1,45,19,37)(2,34,20,42)(3,47,21,39)(4,36,22,44)(5,41,23,33)(6,38,24,46)(7,43,17,35)(8,40,18,48)(9,54,61,29)(10,26,62,51)(11,56,63,31)(12,28,64,53)(13,50,57,25)(14,30,58,55)(15,52,59,27)(16,32,60,49), (1,58,23,10)(2,63,24,15)(3,60,17,12)(4,57,18,9)(5,62,19,14)(6,59,20,11)(7,64,21,16)(8,61,22,13)(25,48,54,36)(26,45,55,33)(27,42,56,38)(28,47,49,35)(29,44,50,40)(30,41,51,37)(31,46,52,34)(32,43,53,39), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,40,58,29,23,44,10,50)(2,32,63,43,24,53,15,39)(3,46,60,52,17,34,12,31)(4,55,57,33,18,26,9,45)(5,36,62,25,19,48,14,54)(6,28,59,47,20,49,11,35)(7,42,64,56,21,38,16,27)(8,51,61,37,22,30,13,41) );
G=PermutationGroup([[(1,45,19,37),(2,34,20,42),(3,47,21,39),(4,36,22,44),(5,41,23,33),(6,38,24,46),(7,43,17,35),(8,40,18,48),(9,54,61,29),(10,26,62,51),(11,56,63,31),(12,28,64,53),(13,50,57,25),(14,30,58,55),(15,52,59,27),(16,32,60,49)], [(1,58,23,10),(2,63,24,15),(3,60,17,12),(4,57,18,9),(5,62,19,14),(6,59,20,11),(7,64,21,16),(8,61,22,13),(25,48,54,36),(26,45,55,33),(27,42,56,38),(28,47,49,35),(29,44,50,40),(30,41,51,37),(31,46,52,34),(32,43,53,39)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,40,58,29,23,44,10,50),(2,32,63,43,24,53,15,39),(3,46,60,52,17,34,12,31),(4,55,57,33,18,26,9,45),(5,36,62,25,19,48,14,54),(6,28,59,47,20,49,11,35),(7,42,64,56,21,38,16,27),(8,51,61,37,22,30,13,41)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | ··· | 4H | 4I | 4J | 4K | 4L | 8A | ··· | 8H | 8I | 8J | 8K | 8L |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 8 | ··· | 8 | 8 | 8 | 8 | 8 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 8 | 8 | 2 | ··· | 2 | 4 | 4 | 8 | 8 | 4 | ··· | 4 | 8 | 8 | 8 | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | |||||
image | C1 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | D4 | D4 | C4≀C2 | C4.D4 | C42⋊C22 |
kernel | C42.67D4 | C42.C22 | C2×C8⋊C4 | C42.6C4 | C22.26C24 | C4⋊1D4 | C4⋊Q8 | C2×C4○D4 | C42 | C22×C4 | C4 | C22 | C2 |
# reps | 1 | 4 | 1 | 1 | 1 | 2 | 2 | 4 | 2 | 2 | 8 | 2 | 2 |
Matrix representation of C42.67D4 ►in GL6(𝔽17)
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 4 | 4 | 16 | 15 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 13 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 13 | 0 | 0 | 0 |
0 | 0 | 0 | 13 | 0 | 0 |
0 | 0 | 0 | 0 | 13 | 0 |
0 | 0 | 0 | 0 | 0 | 13 |
6 | 7 | 0 | 0 | 0 | 0 |
10 | 11 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 3 | 0 | 15 |
0 | 0 | 5 | 3 | 15 | 15 |
0 | 0 | 5 | 5 | 0 | 15 |
0 | 0 | 12 | 7 | 14 | 11 |
11 | 7 | 0 | 0 | 0 | 0 |
7 | 11 | 0 | 0 | 0 | 0 |
0 | 0 | 14 | 14 | 0 | 8 |
0 | 0 | 12 | 3 | 9 | 9 |
0 | 0 | 12 | 12 | 0 | 9 |
0 | 0 | 5 | 0 | 14 | 0 |
G:=sub<GL(6,GF(17))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,16,0,0,0,0,4,0,0,0,0,1,16,0,0,0,0,0,15,0,13],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,13,0,0,0,0,0,0,13,0,0,0,0,0,0,13,0,0,0,0,0,0,13],[6,10,0,0,0,0,7,11,0,0,0,0,0,0,3,5,5,12,0,0,3,3,5,7,0,0,0,15,0,14,0,0,15,15,15,11],[11,7,0,0,0,0,7,11,0,0,0,0,0,0,14,12,12,5,0,0,14,3,12,0,0,0,0,9,0,14,0,0,8,9,9,0] >;
C42.67D4 in GAP, Magma, Sage, TeX
C_4^2._{67}D_4
% in TeX
G:=Group("C4^2.67D4");
// GroupNames label
G:=SmallGroup(128,262);
// by ID
G=gap.SmallGroup(128,262);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,2,112,141,758,352,1123,1018,248,1971,102]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=1,c^4=a^2*b^2,d^2=b,a*b=b*a,c*a*c^-1=d*a*d^-1=a*b^2,c*b*c^-1=a^2*b^-1,b*d=d*b,d*c*d^-1=a^2*b^-1*c^3>;
// generators/relations